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SUMMARY 

A new finite element method, the Taylor-least-squares, is proposed to approximate the advection- 
dominated unsteady advection-diffusion equation. The new scheme is a direct generalization of the 
Taylorealerkin and least-squares finite element methods. Higher-order spatial derivatives in the new 
formulation necessitate higher-degree polynomials. Hermite cubic shape functions are used. Extensive 
comparisons with other methods in one dimension proved that the new scheme is a step forward in 
modelling this difficult problem. The method offers straightforward generalizations to higher dimensions 
without losing the accuracy demonstrated in one dimension, i.e. the method preserves the important 
property of the Taylor-Galerkin scheme of being free of numerical crosswind diffusion. Several numerical 
experiments were made in two dimensions and excellent results were obtained from the representative 
experiments. 
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1 .  INTRODUCTION 

It is well known that the conventional numerical approximations of the advectiondiffusion 
equation produce infamous spurious oscillations and/or numerical diffusion when advection 
dominates. Price et al.’ found that spurious oscillations occur when a centred finite difference 
approximation is used with a grid Peclet number greater than two. Later, Jensen and Finlayson’ 
showed that for various finite element approximations the upper limit of the grid Peclet number 
ranged from two to five if spurious oscillations are to be avoided. The difficulty of satisfying such 
criteria is that the grid becomes unrealistically fine, approaching a zero grid spacing for a 
hyperbolic system which has no diffusion. 

To reduce spurious oscillations and/or numerical dissipation, various methods were proposed. 
Some of them offered very accurate solutions. Examples are the von Rosenberg method3 which is 
essentially a Peclet-number-weighted average of the backward and centred differences of the 
advection term for the unit Courant number, the piecewise parabolic method by Colella and 
Woodward4 who used a higher-order Godunov method5 to improve resolutions of jumps, the 
characteristic finite element method by Varoglu and Finn,6 etc. Unfortunately, the above 
schemes cannot be directly applied to multidimensions and/or lose accuracy in higher 
dimensions.’ 

* Currently at HydroGeoLogic, Inc., 503 Carlisle Dr., Suite 250, Herndon, VA 22070, U.S.A. 

027 1-209 1/90/090021-18$09.00 
0 1990 by John Wiley & Sons, Ltd. 

Received 28 December 1988 
Revised 12 May 1989 



22 N.-S. PARK AND J. A. LIGGETT 

Computationally, an adaptive can be efficient but cannot be used for pure advection 
problems.8 Petrov-Galerkin schemes have been studied a great deal since the work of Christie et 
al.” Multidimensional Petrov-Galerkin schemes have been improved by Hughes and Brooks’ 
to reduce crosswind diffusion. The Petrov-Galerkin methods have been further improved by 
Galego and Dutra Do Carmo” and Franca et 

One of the favourite methods in multidimensions is the fractional time step operator-splitting 
method.14-” The idea is to treat the advection and dispersion parts separately in each fractional 
time step and use different numerical schemes for different physical processes. The crucial part of 
this scheme is the advection step and the method of characteristics is a natural choice. The 
accuracy of the method of characteristics depends largely on the interpolation scheme. In the 
earlier studies previously mentioned, a cubic polynomial was used for interpolation at the foot of 
characteristics, thereby greatly reducing the error associated with a linear interpolation. In spite 
of the good results, the operator-splitting methods have the weakness that the downstream 
boundary condition cannot be satisfied during the advection time steps, though it can be shown 
that the error in the boundary value is first-order in time.I8 

Another good multidimensional scheme is based on higher-order time approximations. 
Morton and Parrott” considered the problem of a proper coupling between the time dis- 
cretization and the Galerkin spatial approximation of hyperbolic problems, noting that the 
Gaierkin spatial approximation is fourth-order accurate. Donea et ~ 1 . ~ ’ ~ ~ ’  developed the 
Taylor-Galerkin method which is third-order accurate in time. The Taylor-Galerkin method has 
all the advantages of the Petrov-Galerkin methods while allowing straightforward general- 
izations to higher dimensions. On the other hand, Carey and Jiang” used least-squares finite 
elements for first-order hyperbolic systems. They showed that the semidiscretized equation of the 
least-squares method is very similar to that of the Taylor-Galerkin scheme. 

An earlier study indicated that the use of a higher-order interpolation function such as the 
Hermite cubic polynomial yielded very accurate solutions for the advection of smooth profiles 
even if they were steep. However, for profiles with sharp fronts, the cubic elements gave worse 
results than linear elements when either the standard Galerkin or Taylor-Galerkin method was 
used. In this study a new finite element formulation is proposed which gives very accurate 
solutions for both cases. The new formulation, the Taylor-least-squares method, is based on the 
higher-order time approximation using the Taylor series and the least-squares methods. In the 
next section the Taylor-least-squares scheme is developed first for the one-dimensional advection 
equation. Then the amplitude and phase errors for the Taylor-Galerkin, least squares 
and Taylor-least-squares methods are examined. The accuracy of the Taylor-least-squares 
scheme is demonstrated by numerical examples. 

Donea et aLzo indicated that for the advection-diffusion equation only the second-order 
Taylor-Galerkin scheme is possible, owing to the presence of the diffusion term, unless an 
operator-splitting method is used. In this study the advection4ffusion equation is discretized 
with different accuracies for advection and diffusion operators so that third-order accuracy is 
recovered in the limit of zero diffusion. Finally, the multidimensional Taylor-least-squares 
method is derived and is applied in two dimensions to demonstrate its direct extension to higher 
dimensions and its accuracy. 

among others. 

2. THE TAYLOR-LEAST SQUARES FINITE ELEMENT METHOD 

The one-dimensional scalar advection-diffusion equation in a homogeneous medium with an 
incompressible flow velocity is 

(a, + ua, - Da:) c = 0, (1) 
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where u is the flow field, D is the diffusion coefficient, te[O, co) and XE[X,, xN]. Appropriate initial 
and boundary conditions constitute a well-posed problem. Numerical schemes suffer when 
diffusion is small compared to advection, so consider the extreme case, the equation for pure 
advection, 

(2) (a, + ud,) c = 0, 

with a boundary condition at the inflow boundary and an initial condition. Donea et al." 
developed the Lax-Wendroff Taylor-Galerkin (LWTG) and Crank-Nicolson Taylor-Galerkin 
(CNTG) schemes which are third- and fourth-order accurate in time respectively. Since the 
derivations of the Taylor-Galerkin and least-squares schemes are essential to the derivation of 
the new scheme, they will be reviewed briefly. The Taylor-Galerkin methods can be derived at 
once using the &weighted time discretization. Expand c(x,(n + 1) At) about c(x, n At) and rewrite 
as 

c"+ 1 -Cn = a , c " + - a c ? : c " + ~ a ~ c " + o ( ( A t ) " ) ,  At  
At 2 6 

where cn = c(x, n At) .  Conversely, expand c(x, n At) about c(x,(n + 1) At)  and rewrite to get 

(3) 

A @weighted average of (3) and (4) is 

Equation (5) is fourth-order accurate when d =  1/2 and is invariant with respect to the number of 
spatial dimensions since it only involves time derivatives. But from the one-dimensional 
advection equation, 

a,= -Ua,, 
a; = uza:, 

a: = u2a; a,. 
The last substitution in (6)  is necessary if linear elements are to be used. However, it turns out 
that the scheme becomes unstable for any value of 0 when -u3d i  and cubic elements are used. 
Using (6 )  and a simple difference for the remaining time derivative one gets 

At this point it may be advantageous to introduce a local co-ordinate s to deduce an important 
parameter, the Courant number, and for the sake of shape functions which are more convenient in 
local co-ordinates. The local co-ordinate S E  [ - 1, 11 is 

2x -(x; + xi+ 
S =  ? X E r X ; , X i + l l ,  Ax 

where 
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For 8 = 0, (7) in local co-ordinates becomes 

[ 1 -;v2a:] +i;c") + [l - v a,, (I4 a&" ) = 0, 

where v is the Courant number (uAt/Ax). Equation (8) is identical to the semidiscretized third- 
order accurate LWTG equation given by Donea et For O =  1/2 one gets 

[ 1 +va,+;a:] ( c '+~J~ ' )+ua"c"=o ,  (9) 

which is identical to the fourth-order accurate CNTG equation of Donea et aLZ1 

systems. Using the &weighted time difference, the LS functional of (2) is 
Carey and Jiang22 proposed the least-squares (LS) method for solutions of hyperbolic 

Taking a variation with respect to c"" and letting s I ( t ) = O ,  

Identifying Sc"+l as a weighting function w and after an integration by parts, the Euler equation 
in local co-ordinates becomes 

c"+l-c" 
[l - v2 a: 1 ( At ) + [l - va,1 (u a,c") = 0, 

in which 8 has been replaced by 1/2. The LS equation (12) is very similar to the LWTG 
equation (8) except that the coefficient -2/3 is replaced by - 1. 

The Taylor-least-squares (TLS) formulation is obtained similarly. First, the advection equa- 
tion is discretized in time up to third-order and then a least-squares functional is formed from the 
semidiscretized equation. Using the third-order accurate equation (7) inside the square brackets 
in (lo), the least-squares functional for the TLS scheme is obtained as 

The final TLS formula results by equating the variation of the functional to zero. The scheme is 
third-order in general and is fourth-order for 8 = 1/2. The Euler equation for the fourth-order TLS 
scheme is 

v 2  3 1 [ 1 -;a: + "a:]( A t  ) + [ 1 - v a ,  + -a: (u8,c") = 0 .  
c"+ 1 - c" 

9 

The fourth-order spatial derivative results from integrating 6I(t) by parts twice. The first two 
terms in the square brackets in (14) are similar to those of (8) and (12) except for the coefficient of 
- 1/3, but it will be shown that improvements in numerical experiments due to the coefficient and 
the extra terms are rather significant. According to all the Euler equations can be 
interpreted as having different mixed norms for approximations of advection and diffusion terms. 

The Euler equations for the LWTG, CNTG, TLS and LS whemes can now be further 
discretized by appropriate shape functions. Obviously the conventional linear ('hat') function 
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cannot be used for the TLS scheme owing to the higher-order derivatives. For the TLS scheme 
the Hermite cubic polynomial (e.g. Reference 25) is chosen. The shape functions in local 
co-ordinates are 

(15) 
ac. aci+ 1 

c ( s l r )  = c i ( t ) N l ( s )  + L ( r ) N Z ( S )  + C i + l ( t ) N 3 ( S )  + - ( t ) N 4 ( S ) ,  ax  ax  

where 

N ,  = $(s - 1)2(s + 2), N 2  = ( A x / ~ ) ( s  - 1)'(s + l ) ,  

N 3  = -$(s + 1 ) 2 ( ~  - 2), N ,  = ( A x / ~ ) ( s  + 1) ' (~ - 1). 

For other schemes both linear and the cubic elements are used. In the next section Fourier 
analysis is used to examine the accuracy characteristics of the various methods. 

3. FOURIER ANALYSIS 

Certain accuracy characteristics of a numerical scheme can be examined by Fourier analysis. 
Numerical eigenvalues are obtained by substituting a Fourier mode eikx, where k is a wave 
number and i = ,/( - l), into the fully discretized equations. For LWTG with the linear element2' 

(16) 
2v2sin2(kAx/2) + ivsin(kAx) 

1 - $( 1 - v2)  sin2 (kAx/2) 
tz, = 1 - ' 

For LS with the linear element" 

(17) 
48v2sin2(kAx/2) + ivsin(kAx) 

1 - 4(; - 82vZ)sin2(kAx/2) 
* 5zs = 1 - 

For the LWTG, LS and TLS schemes with the cubic elements, all eigenvalues have same form as 

- b _+ ,/(b2 - 4ad) 
2a 

t' = 
9 

where a, b and d for each method can be found in the Appendix. In general, the amplification 
factor t is complex and c"+ ' = tc". The analytic eigenvalue for the continuum equation (2) is 

(19) 
Note that because one continuum equation is approximated by two discrete equations, one for 
the primary unknown and the other for its derivative, there are two eigenvalues, physical and 
computational, associated with a numerical scheme when the cubic element is used.26 

One way of measuring the accuracy of a numerical scheme is to compare the modulus and 
argument of a numerical eigenvalue to those of the continuum eigenvalue. For the amplitude 
error define 

iku A t t , = e -  . 

(20) 
151 

I t a l  
R = ~ = 151, 

since It,[ = 1, and for the phase error 
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Figure 1. Relative amplitude (left column) and phase (right column) errors for v = 0.24: (a) linear LWTG; (b) cubic 
LWTG; (c) linear LS; (d) cubic LS; (e) TLS; --, analytic; -A-, numerical 

Table I. Comparison of L’-error of Fourier analyses for various methods 

Linear LWTG Cubic LWTG Linear LS Cubic LS TLS 

1.28 0.362 x lo-’ 1.24 0.344 x lo-* 0.428 x lo-’ ER 
Em 3.15 0.168 x lo - ’  3.27 0.198 0.245 x lo-’ 

Polar plots of the amplitude and phase errors are given in Figure 1, and the discrete L2-error (<), 
measured by (22) with a normalization factor of unity, is given in Table I: 
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where y j  is a discrete value of either R or 0, and N is the total number of discrete points. The 
Fourier analysis for the fourth-order accurate CNTG is not reported here owing to its poor 
performance. The scheme gives much worse spurious oscillations than the LWTG scheme 
although it has the least amplitude and phase errors: it is non-dissipative (zero amplitude error) 
and has the smallest phase error among the methods tested in this report. The linear LWTG and 
linear LS schemes behave quite similarly, as shown in Figures l(a) and l(c) and in Table 1. The 
error plots for the cubic elements are considerably better than for linear elements and the 
differences among them appear to be small, although the TLS scheme is marginally better than 
the others. However, numerical experiments in the next section show that the marginal improve- 
ment makes a rather large computational difference. 

4. NUMERICAL EXAMPLES 

Two one-dimensional example problems were chosen from Reference 27 which set a number of 
specific problems as tests of the performance of numerical solutions of the advection4iffusion 
equation. They are pure advection of a Gaussian hill and of a sharp front. For the Gaussian hill 
the prescribed conditions are 

c( x, 0) = exp ( JX -22cQ’2) 

and 
c(0 , t )  = 0 ,  

where ~7 = 264 and ~ E [ O ,  12 8001. The hill is steep in the sense that the hill decreases to 1 % of the 
peak value over 4Ax. For the second problem the initial and boundary conditions are 

c(x,O) = 0 

and 

c(0 , t )  = 1 

Parameters common to both problems are: uniform spatial discretization of Ax = 200, constant 
flow velocity ( u  = 05) ,  time step Ac = 96 and the solutions are examined at  t=9600. It is difficult 
for one numerical scheme to model both examples well. In particular with both linear and the 
cubic elements, the CNTG scheme, which has the best accuracy based on the Fourier analysis, 
gives excellent results for the Gaussian hill problem but poor results for the sharp front problem. 
Thus small dissipation in amplitude can be advantageous to dampen error due to incorrect phase 
transport. The LWTG and LS schemes are tested along with linear and the cubic elements, and 
the TLS scheme is tested with the cubic elements. The results are reported in Figure 2. As was 
expected from the Fourier analyses, the two schemes with linear elements yield similar results 
(Figure 2(a) and 2(c)). All three schemes with the cubic elements perform well for the Gaussian hill 
problem. However, for the sharp front problem, the LWTG and LS schemes give worse results 
than their linear counterparts. But the result from the TLS scheme is far better than those of the 
others: the front is distributed only over 5Ax compared to 8Ax-1OAx for other schemes, 
including that of Ding and Liu.16 

The performance of the TLS scheme for other values of 8 and v is given in Figure 3. Figure 3 
shows the example problems with v=03 ( A t =  IOO), 8=0.5 and v =  1.0(At=200), 8= 1-0. The 
scheme fails to provide useful solutions for the following combinations: 8 =0, v = 0.5 and 8 =0,0.5, 
v =  1.  The results from v=03,8=0.5 are very good, but when the Courant number is extended to 
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Figure 2. Pure advection of the Gaussian hill and the sharp front: (a) linear LWTG; (b) cubic LWTG, (c) linear LS; 
(d) cubic L S  (e) TLS; -, analytic; -A-, numerical 

unity the solution degrades. Unfortunately, a stability relationship between v and 8 cannot be 
obtained owing to the complexity of the numerical eigenvalues. 

5. HIGHER-ORDER APPROXIMATION OF THE ADVECTION-DIFFUSION 
EQUATION 

As was shown in the previous section, higher-order time approximations imply higher-order 
spatial derivatives. Therefore the straight application of the Taylor-Galerkin scheme to the 
advection4iffusion equation allows only second-order accuracy in time. However, with the use 
of the fractional time step operator-splitting method, one can retain higher-order accuracies for 
the advection part.20 If the advection and diffusion equations are solved separately, violation of 
the downstream boundary condition is inevitable during the advection step. In this study the 
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2400 3400 4400 5400 6400 7400 8400 

[ b l  

Figure 3. The TLS scheme for other values of 0 and v :  -, analytic, -0-, 0 = 0.5, v = 0.5; -0-, 0 = 1, v = 1 

operator-splitting method is employed to use the higher-order approximation for the advection 
operator, but the two equations are never solved separately. It is done by formally adding the two 
semidiscrete equations with possibly different accuracies and fully discretizing the resulting 
equation using the least-squares procedure. This way one can avoid violating the downstream 
boundary condition at any time. Following Donea et the advection part becomes 

(a,  + ua,)c, = 0 

(a, - D ~ ; ) C ,  = 0, 

(23) 

(24) 

and for the diffusion 

where cl = e n ,  c i  = c;" and c"+ l -  - c 2  n + l  . The third-order approximation of (23) is (7) with the 
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For the well-behaved diffusion part, the Crank-Nicolson method is used: 

1 
I 

2000 4000 6000 8000 10000 

(a1 

- 
2000 4000 6000 8000 10000 

( b l  

Figure 4. Results of the TLS scheme for the advection-diffusion equation with various Peclet numbers: -, analytic; 
- + - P ,  = 100, -A--, P, = 50; -0-, P, = 20; P O - ,  P, = 2 
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Adding (25)  and (26) gives 
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To remove the intermediate values cz and el' ', the Taylor series is used. In the advection part 
c:+' is expanded about c;' and in the diffusion part cz is expanded about c;. Switching back to 
the original variables, the semidiscretized equation becomes 

+$[ 2 ( D  + u 2 A r (  - 8 ) ) ~ "  + ( D  + . .At( f - R ) ) c " " ] .  

Thus first the advection-diffusion equation is split into two parts and then the two equations are 
discretized independently with different accuracies. As with the conventional operator-splitting 
method, there is an advantage in having different numerical schemes for different physical 
processes. Therefore the highly accurate TLS scheme can be retained for the advection part and 
the conventional second-order accurate Crank-Nicolson scheme can be used for the well- 
behaved diffusion part. The two semidiscrete equations are then added to avoid violating the 
downstream boundary condition. Then the intermediate values are removed using the Taylor 
series. The last process guarantees the recovery of third- or second-order accuracy for pure 
advection or pure diffusion respectively. Note, however, that when both advection and diffusion 
are present, the theoretical accuracy of the scheme is only O ( A t )  owing to the Taylor series 
substitutions into (28). Nevertheless, the numerical experiments showed no signs of degeneracy. 
The example problems in the previous section were calculated with various values of diffusion 
added. The results for Peclet ( u A x / D )  numbers of 100, 50, 20 and 2 are given in Figure 4 and are 
in good agreement with the analytical solutions. 

6. MULTIDIMENSIONAL TAYLOR-LEAST SQUARES SCHEME 

The TLS scheme can be extended to higher dimensions without difficulty. The advection- 
diffusion equation is 

(29) 
where u is the velocity vector, D is the diffusion tensor and V is the gradient operator. The 
fractional time step method allows separate discretizations of the advection and diffusion parts. 
The third-order time approximation of the advection equation is the same as (5 ) ,  but the 
substitutions for the time derivatives in higher dimensions become 

[a, + u . V  - V - ( D - V ) ] C  = 0, 

where : is the scalar product of dyads. For the diffusion part the Crank-Nicolson method is used: 

- C" 
1 

= & [ V . ( D . V ) ] ( C " + ~  + c"). 
A t  
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Substituting (30)  into (5) and adding the resulting equation to (3 l), the multidimensional version 
of the semidiscretized TLS equation for the advection-diffusion equation is obtained: 

where 
d, C " + 1  = d,  C" I (32) 

d, = 1 + M , u * V  + aZ{uu:VV + [ ( u . V ) U ] . V }  - ( A t / 2 ) [ V . ( D * V ) ] ,  

d, = 1 + P l u . V  + / ? z { ~ ~ : V V  + [ ( u . V ) U ] * V }  + ( A t / 2 ) [ V * ( D . V ) ] ,  

in which 
a1 = OAt,  11 = -(1- O ) A t ,  

a2 = - ( A t 2 / 2 ) ( 3  - O), 8, = ( A t 2 / 2 ) ( 5  - 0). 

For unsteady flow, u = u"+l  in d ,  and u = u" in d,. Zero variation of the least-squares 
functional for (32) becomes 

Again, using shape functions for 8c"+l, a multidimensional TLS scheme for the advection- 
diffusion equation results. 

In this study the accuracy of the multidimensional TLS scheme is demonstrated in two- 
dimensions. A set of non-conforming Hermite cubic basis functions on triangular elements" were 
selected: 

where 

F X i =  L i 2 [ - ( X i - X j ) L j + ( x k - X j ) L k ]  + ~ ( - ~ X ~ + X , + X I I ) L ~ L ~ L ~ ,  

F Y i =  L ? [ - ( Y i - Y j ) L j  + ( yk -y i )Lk]  + + ( - 2 Y i  + yj + Y i ) L l L , L 3 ,  

in which A is the area of a triangular element, ( x i ,  y i )  are the co-ordinates of the vertices, Li is the 
area co-ordinate and the subscripts (i, j ,  k) are in cyclic order. 

7. NUMERICAL EXAMPLES 

The same types of example problems as in the one-dimensional case are chosen: advection of a 
Gaussian hill in a rotating flow field" and of a sharp front with linear velocity. The domain is a 
square with x, y E [ - 3400,3400] and is discretized by 35 x 35 mesh. Each 200 x 200 subsquare is 
further divided by two triangular elements. For the Gaussian hill problem the flow field is given as 

where d, = .rr/l500, and the initial condition is 

1 
c(x, y ,  0 )  = exp ( -- 2oz Cx' + (Y + 1800)21 
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Figure 5. The Gaussian hill after one revolution; A x  = Ay = 200, Ar = 15 
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where r~ = 264. Homogeneous Dirichlet boundary conditions are enforced at the inflow -0undary. 
A time step A t =  15 was used to avoid the Courant number exceeding unity at the corners. The 
result after one revolution is reported in Figure 5 and is impressive in that it indicates almost no 
numerical diffusion. The peak value is 0.984 and cmin = 0.0, i.e. less than 2% dissipation at the 
peak and no undershoot at all. Moreover, no nodal value has changed more than 2% from the 
initial condition. The superior behaviour of the TLS scheme can be demonstrated by doubling the 
spatial increments to 400. With this spacing the hill is distributed only over 4Ax in either 
direction, which is the minimum to describe a Gaussian hill. As a result, the number of nodes is 
reduced from 1225 to 289. The centre of the initial hill is moved to (0, - 1600) and A t  = 30 is used. 
The result after one revolution is given in Figure 6. There appears more dissipation and a small 
magnitude of undershoot: c,,, = 0.829 and cmin = -0.018. Leismann and Herrling” used a 
linear element Petrov-Galerkin method to solve the same problem with Ax = Ay = 200 and 
A t =  10. For comparison, their peak was reduced to about 0.73 and cmin = -0.05. Also, the TLS 
scheme did much better in preserving the symmetry of the hill. Thus in this particular case the 
TLS method is capable of producing better results than the linear Petrov-Galerkin scheme while 
using a coarser grid which results in fewer unknowns and larger time increments. 

For the sharp front problem the initial and boundary conditions are 

4x3 y, 0 )  = 0 
and 

c =  1 V t  at x =  -3400, y E [ - 3400,34001, 
c = 0 V t  at X E [  -3400,3400], y =  -3400 

respectively. The differences in the examples are in the flow field: for the first case u = u = 1 so that 
the side of an advancing front always coincides with the sides of the elements, and for the second 
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3i00 

Figure 6 .  The Gaussian hill after one revolution; Ax = A y  = 400, A t  = 30 

Figure 7. The sharp front at t = 2000 when u = u = 1 

case u = 2 and u = 1 so that the side of the front falls inside the elements. The same discretization as 
with the first Gaussian hill problem is used. The results at t = 2000 using A t = 5 0  are given in 
Figures 7 and 8 respectively. For the first case c,,, = 1 . 1  13 and cmin = -0.018, and for the second 
problem c,,, = 1.035 and cmin = -0,026. In both cases the spurious oscillations are confined 
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Figure 8. The sharp front at t = 2000 when u = 2, u = 1 

within a few elements as in one-dimensional problems. Moreover, there is only small crosswind 
diffusion, a problem on which there has been extensive research in the Petrov-Galerkin method 
(e.g. References 1 1  and 12). 

8. CONCLUSIONS 

In this study the Taylor-least-squares (TLS) scheme is developed for numerical approximations 
of the advection-dominated unsteady advection-diffusion equation. The method offers direct 
generalizations to higher dimensions without losing the accuracy which was demonstrated in one 
dimension. The new scheme is compared with the Taylor-Galerkin2' and least-squares22 
methods. TLS with Hermite cubic elements is shown to be superior to other methods by both 
Fourier analyses and numerical examples. Unlike the Petrov-Galerkin methods and other 
schemes, the TLS scheme does not present difficulties in extension to multidimensions in that it 
does not lose accuracy and is not subject to crosswind diffusion. Because the Hermite cubic 
element involves three degrees of freedom per node, the method can be computationally 
expensive. Fortunately, the scheme allows the use of coarse grids with good accuracy. A 
numerical example demonstrated that the TLS scheme behaves very well for a coarse discretiz- 
ation. Further work is needed to identify the theoretical stability criterion of the method, which 
was not obtained in this study owing to the complexity of the eigenvalues. However, Fourier 
analyses showed that the scheme can be stable up to the unit Courant number with a proper value 
of 8, though the accuracy degenerates as the Courant number approaches unity. 

In this study the third-order Taylor scheme is used to discretize the advection-diffusion 
equation, which Donea et a/." had discretized only to second order owing to the diffusion term. 
Excellent agreement was obtained between analytic and numerical solutions. 
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APPENDIX 

All the coefficients in this appendix were obtained using MACSYMA.” For LWTG with the 
cubic elements 

245v4 + 556v2 + 131 1 
- ---[(280v4 + 128v2 + 72)(ea + e -A)  

3150 6300 
a =  

+ ( -35v4 + 8v2 - l)(e2A + e -” ) I ,  

490v4 + 278v2 - 131 1 
b =  -__ [(560v4 - 280~’  + 64v2 + 192v - 72)e’ 

1575 3150 
+ (560v4 + 280v3 +64v2 - 192v - 72)e-A 

+ ( -70v4 + 35v’ + 4v2 - 6v + l )ezA 

+ ( -70v4 - 35v3 + 4v2 + 6v + l ) e -2A] ,  

980v4 - 146v2 + 131 1 _ _ _  [( 1 120v4 - 1 120v3 + 752v2 - 384v + 72)ea 
3150 6300 

d =  

+ (l120v4 + 1120~’ + 752v2 + 384v + 72)e-A 
+ ( -  140v4 + 140v3 - 58v2 + 12v - l)e2* 
+ ( -  140v4 - 140v3 - 58v2 - 12v - l )e-2*] .  

For LS with the cubic elements 

2205v4 + 3 3 3 6 ~ ~  + 524 1 
-___ [(2520v4 + 768v2 + 288)(ea + e-’) 

12 600 25 200 
a =  

+ (-315v4 + 48v2 - 4)(e2* + e-2A)], 

2 2 0 5 ~ ~ -  524 1 
-~ [(2520v4 - 1 6 8 0 ~ ~  + 768v - 288)ea 

6300 12600 
b =  

+ ( -315v4 + 210v3 - 24v + 4)e2* + ( 2 5 2 0 ~ ~  + 1680~’ - 768v - 288)e-a 
+ ( -315v4 - 210v3 + 24v + 4)eC2”, 



TAYLOR-LEAST SQUARES FINITE ELEMENT 

2205v4 + 528v2 + 524 
12 600 

d =  

37 

1 
25 200 

-- [(2520v4 - 3360v3 + 3264v2 - 1536v + 288)e’ 

+ ( -315v4 + 420v3 - 216v2 + 48v - 4)e2’ 

+ ( 2 5 2 0 ~ ~  + 3360v3 + 3264v2 + 1536v + 288)e-2 
+ ( -315v4 - 420v3 - 216v2 - 48v - 4)e-”]. 

For the TLS scheme 

a =  
175v’ + 560v6 + 2985v4 + 11 12v2 + 524 

12 600 
1 

75 600 
-- [(700v8 + 1540v6 - 3600v4 + 768v2 + 864)(ea + e - ’ )  

+ ( -  175v8 + 140v6 - 45v4 + 48v2 - 12)(eZd + e-”) I ,  

1 7 5 ~ ~  - 1 1 2 0 ~ ~  + 1 5 1 5 ~ ~  - 2 2 2 4 ~ ~  + 524 
b =  

6300 

1 0 5 0 ~ ~  - 3 0 8 0 ~ ~  + 7 1 4 0 ~ ~  

- 8640v4 + 7920v3 - 1536v2 - 2304v2 + 864)e‘ 
+ ( -  175v8 + 525v7 - 280v6 - 420v5 + 585v4 - 180v3 - 96v2 + 72v - 12)e2’ 

+ (700~’ + 1050v7 - 3080v6 - 7 1 4 0 ~ ~  - 8640v4 - 7920v3 - 1536v2 + 2304v + 864)e-’ 

+ ( - 175v’ - 525v7 - 280v6 + 4 2 0 ~ ~  + 585v4 + 180v3 - 96v2 - 72v - 12)e-2’], 

1 7 5 ~ ~  - 7 0 0 ~ ~  + 1 7 2 5 ~ ~  - 1 6 9 6 ~ ~  + 524 
d =  

12 600 
1 

75 600 

- 3600v4 - 4320v3 + 8256~’ + 4608v + 864)e’ 

-___ [(700v8 - 2100v7 + 700v6 + 4200v5 

+ ( -  175v8 + 1050v7 - 2800v6 + 4200v5 - 3825v4 + 2160v3 - 744v2 + 144v - 12)eZi 

+ (700v8 + 2100v7 + 700v6 - 4200~’ - 3600v4 + 4320v3 + 8256v2 + 4608v + 864)e-’ 
+ ( -  175v8 - 1050~’ - 2 8 0 0 ~ ~  - 4200~’ - 3825v4 - 2160v3 - 744v2 - 144v - 12)e-2A], 

where EL = i k  Ax. 
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